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Our result indicates that this constraint is physically 
sensible, resulting in improved values for the param- 
eters we wish to determine. It is crystal clear that anal- 
yses of future accurate X-ray data in terms of non- 
spherical electron density functions will have en- 
hanced success if this joint refinement procedure can 
be used. 

This work was carried out during the tenure of an 
S.R.C. studentship by one of us (J.A.K.D.), who was 

on attachment to Harwell from the University of Ox- 
ford. 
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Contribution of the Thermal Diffuse Scattering to the Integrated Intensities 
of Cubic Powder Patterns 
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The contribution of the thermal diffuse scattering to the measured X-ray intensities of cubic powder 
patterns is calculated without making the approximation that T> O. Correction curves are given which 
are valid at all temperatures. 

When recent measurements of the integrated intensities 
of diamond powders (Schoening & Vermeulen, 1969) 
had to be corrected for thermal diffuse scattering (TDS) 
it appeared that for low temperatures no simple method 
existed in the literature. The work by Chipman & 
Paskin (1959a, b) which is valid for moderately high 
temperatures (T> O) was therefore extended to cover 
low temperatures. The results are of interest because 
an easy correction procedure has been derived which, 
within certain limitations, is applicable to cubic pow- 
ders at all temperatures. 

The first-order TDS per cubic unit-cell for a mon- 
atomic crystal is (James, 1948) 
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where n is the number of atoms of mass m in the unit 
cell and the other symbols are as defined by James 
(1948). Equation (1) can be applied to f.c.c, or b.c.c. 
crystals by setting n = 4 or 2 respectively. For crystals 
with more than one atom in the primitive cell (e.g. 
diamond cubic structure for which n=  8) it remains 
valid for the acoustic modes. The sum in equation (1) 
will now be approximated by/7~v,7, 2 where/7~ and vm 
are suitable mean values. Without this approximation 
it would not be possible to continue without making 
reference to a specific material. 

With x=hv/KT=gO/gmT equation (1) becomes 

4KTsinzO(  x -~) 
Iz =Fz e-2M nmgZvZm2z -~- -~  + . 

Following Warren (1953) the TDS background of the 
powder patterns is obtained by integrating for con- 
stant 22 -x sin 0 over the Brillouin zone which is as- 
sumed to be spherical with radius gin. After summing 
the contributions of the hkl reflexions, the TDS be- 
comes 
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where a is the cubic lattice parameter and jngz, X and 
Xhkz are as defined by Warren (1953). The result agrees 
with that by Herbstein & Averbach (1955). 

The TDS contribution to the measured integrated 
intensity can now be obtained by following Chipman & 
Paskin (1959b). They separate the TDS into that part, 
say BTDS, which is subtracted together with the back- 
ground, and that part, say PTDS, which remains with 
the integrated intensity. The s u m  ATDS = PTDS-t- BTDS 
can be obtained by integrating equation (2). BTDS is 
found by: (1) calculating the TDS from equation (2) 
at the two positions corresponding to the beginning 
and end of the measured reflexion, (2) connecting the 
resulting two intensities by a straight line and (3) cal- 
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culating the area (which is equivalent to BTDS) under 
this line. Assuming that only one TDS peak contributes 
to each hkl reflexion, the above procedure has given 
results as follows. 

Integrating equation (2) from X= - f i  to + fi, where 
f i=(aA cos O)/2gm2~Xhlcl is related to the total spread 
of the reflexion A, gives 

A T D S =  F 2 e -2M 2a2KO sin2 0 jhkt { fi 
nmVam 22 Xhkl Xhla 
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Fig. 1. Curves for finding the ratio a of the integrated TDS to 

the integrated Laue-Bragg intensity. The curves are labelled 
with their respective O/T parameters. 
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From equation (2) the integrated intensity under the 
straight line becomes 

B T D S = F  2 e_2M 2a2KO sin 2 0 jh~t fi{1 6 
nmv2 22 Xh~t - agm 
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Transforming the difference ATDs--BTDs to the dif- 
fractometer coordinates and dividing by the Laue- 
Bragg intensity (Warren, 1955), the ratio of the inte- 
grated TDS intensity to the integrated Laue-Bragg in- 
tensity becomes 

8zcazKO sin 2 0 { - 2  ._~ 5 __T 
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The intensity corrected for TDS is 1/(1 + a )  times the 
measured intensity. The expression for a can be re- 
written in the form 

Z=4 .810x  104y Y-2--O-- C O g 

where 

x [1.642- Cq~(C)])}, (3) 

Z = anmaO/a3g~2 -z sin 2 0,  
Y= (aA cos O)/2agm2 , 

and ma is the atomic weight, O a mean characteristic 
temperature in °K, a the cubic lattice parameter in A, 
2 the X-ray wavelength in .& and A the spread of the 
reflexion in rad 20. For b.c.c, crystals n =2  and agm = 
(3/2r01/3, for a f.c.c, crystal n = 4 and agm = (3/~z) 1/3 and 
for a diamond cubic crystal n = 8  and agm=(6/~z) 1/3. 
Equation (3) is suitable for numerical calculations at 
low temperatures, i.e. for O/T> 1. In the range O/T< 1 
the approximate expression 

T 
Z = 9.720 x 104 Y - -  

O 

is better suited for numerical work. 
Except for a, all quantities in equation (3) are either 

experimental or material constants. The plot of Z vs. 
Y, shown in Fig. l, is therefore applicable to all cubic 
materials with one atom in the primitive cell and to 
the acoustic branches of cubic materials with more 
than one atom in the primitive cell. At high tempera- 
tures the curves become straight lines which agree with 
the results of Chipman & Paskin (1959b). 

One aspect of selecting the proper value for O in 
equation (3) is related to finding the average E~, and 
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Vm. In the high temperature approximation, for which 
E~=KT, Chipman & Paskin (1959a) have considered 
the averaging of the wave velocities, reaching the con- 
clusions that OD is usually adequate (Chipman & 
Paskin, 1959b). At intermediate temperatures the cal- 
culation becomes very involved. For very low tem- 
peratures it is seen from Fig. 1 that, except for very 
narrow peaks, the zero point energy terms dominate 
the correction factor or, e.g. for Y> 0-03 the difference 
between Z for O/T= 1000 and Z for O/T= 100 be- 
comes small. Therefore, in order to obtain a low tem- 
perature estimate for Vm, the TDS at 0°K was calcu- 
lated for the general case that v, =pvt. The mean veloci- 
ties which would give the same TDS, are as follows, 
(1) in the immediate vicinity of the centre of the Bril- 
louin zone the mean velocity is given by Vml~-pvf -a, 
(2) a quarter of the way towards the zone boundary 
vg a ~ [1 + 0.838(p- 1)]v7 a, (3) half way towards the 
zone boundary v2,1 ~[1 +0.666(p-1)]vF 1 and (4) near 
the zone boundary Vg~_vF 1. Because measurements 
of the integrated intensities are usually confined to the 
vicinity of the peak, OD which for p =2  is equivalent 
to Vg~= l'78VE ~, or OM which for p = 2  is equivalent 
to v2,~=l.67v7 ~ could both be approximately appli- 
cable. 

A more important aspect of selecting a O value is 
the inapplicability of the Debye frequency distribution 

which has been assumed throughout. A real frequency 
distribution can only give equivalent OM's and OD'S 
which can differ considerably at low temperatures, OM, 
in general, varying less with temperature than OD. It 
can be expected that OM is the better estimate to be 
used in equation (3) because the averaging over the 
Brillouin zone for TDS is more like that used for the 
Debye-Waller factor than that for the specific heat. 
Therefore, Olu should be preferred when both OM and 
Oi) are known. 

The author wishes to thank Dr L. A. Vermeulen and 
Mr D. C. MacMurray for participating in the work. 
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The crystal energies of TiO2, GeO2 and SnO2 have been calculated by both the Born-Haber cycle and 
Born-Mayer equations. The agreement between the results suggests strongly ionic character in the 
M-O bonds. 

Calculations by Baur (1961) and by Kingsbury (1968) 
have led to the suggestion of appreciable covalent 
character of the M-O bond in the dioxides of Ti, Ge 
and Sn, because the calculated crystal energies have 
been found to be about 25% larger (more positive) 
than the corresponding Born-Haber (thermodynamic) 
values. The following calculations, however, based 
upon the Born-Mayer electrostatic model, lead to 
results in good agreement with the thermodynamic 
values. 

For present purposes, the Born-Haber cycle may be 
cast into the equation: 

A U= AHc'(MO2, cryst) 

-IM-SM-D(O2)-2E(02-)+ 3RT. (1) 

The enthalpies of formation and of sublimation have 
been taken from Kubaschewski, Evans & Alcock 
(1967), the ionization potentials from Moore (1949, 
1952, 1958), the dissociation energy from Rossini, 
Wagman, Evans, Levine & Jaffe (1952) and the elec- 
tron affinity from Ladd & Lee (1960). The results are 
listed in Table 1. 

The simple Born-Mayer ionic model leads to the 
equation 

- NA e 2 
U(r ) -  103j  r (1 -0 / r )  kcal.mole -1 , (2) 

where Q/r is given by 
Ae2/r 

o/r = 9 V/fl + 2A e2/r " (3) 


